
with fe(T) denoting the exact temperature, ~ denoting the magnitude of =he entered relative 
error, and ~ denoting a random number generated by the random numbers generator to simulate 
the fluctuation errors of measurements. An analysis of these results confirms the effective- 
ness of the regularization algorithm and the reliability of the solution. A solution with 
extrapolation can, however, be recommended only for slowly evolving thermal processes. In- 
creasing the relative error of input temperatures does not give rise to any other singular- 
ities in the solution to a reverse heat-conduction problem. As the analysis of results (Figs. 
1 and 4) indicates, however, an inaccurate stipulation of the boundary condition for the reg- 
ularizing spline gives rise to appreciable errors in the retrieved boundary functions within 
a finite time interval. In our case the condition S~'(b) = 0 was stipulated for the spline, 
this being correct for steady-state thermal conditions. At the end of the interval, there- 
fore, this condition should correspond to steady-state thermal conditions. 

NOTAT ION 

T, temperature; t, time coordinate; x, space coordinate; and a, thermal diffusivity. 
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ESTIMATES OF THE VALIDITY RANGE FOR THE HYPERBOLIC EQUATION OF 

HEAT-CONDUCTION IN HOMOGENEOUS SYMMETRIC CONTINUOUS BODIES 

K. V. Lakusta and M. P. Lenyuk UDC 536.24.02 

Estimates are made0f the geometrical dimensions of symmetric continuous bodies, 
the temperature fields within which can be described by, respectively, the hyper- 
bolic or the parabolic heat-conduction equation. 

The phenomenological heat-conduction theory has been developed in ~ formulation uniform 
with respect to geometrical variables [i]. An analysis of heat and mass transfer, especially 
when the process is nonsteady and very intensive, leads to a hyperbolic heat-conduction equa- 
tion and has served as a basis for a dynamic heat-conduction theory [2]. 

The problem of de=ermlnlng the structure of =he temperature field in homogeneous sym- 
metric continuous bodies reduces, within the dynamic theory of heat conduction, to that of 
finding within the region D = [0, tl] x ~ = {(t, r), 0~t~_=:, 0 ~r~R} a bounded and 
sufficiently smooth solution to the equation [2] 
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for the initial conditions 

and the boundary conditions 

0T 
lim = 0, 

Or 
r ~ O  

, 1 a T  ( 0  z , 2 v - g 1  __0) = 
a at ~ar2 r r Or T f ( t , r )  ( l )  

OTI = 
TIz=o = g,(r) ,  at [e=o &( r )  (2) 

/-~r,  @ ~ T  , , .=n=:~T~(t)---~[ i  @ % T z ) q ~ ( t ) ~ e a ( t ) "  (3) 

1 dZT.  + _ _ _ _  
2 cq dl 2 

for the initial conditions 

We will introduce into the analysis the Hankel finite integral transformation H~v and 
the inverse finite integral transformation (Hg~) -l, both of the first ~ according to the 
rules R 

H,,~ [f (r)] = i' f (r) J~,. ().~r)r2"+ldr ~ [ . ,  (4) 
'0 

&,, (~o~r) 
H ; '  [ fd  = f~ llJ,,,,~ (L~r)ll ~ - -  [ (r), (5)  

n = 0  

respectively, where X n are roots of the transcendental Bessel equation of the first kind 

~J~,~ (~R) + ~ 4 , ,  (~R) = o; (N~,~ ()~J?) - - ~ 4 + ~ ,  ~+, (~R) = o), (6) 
and where 

i R~iV+b 2 ' ~-~Dzl2 ~, l()~R)],  (7)  

i s  the norm squared, w i th  g u ~ ( x )  = x -VJ~(x) ;  and Ju(x)  is  the Besse2 f u n c t i o n  of the f i r s t  
order  of  argument ~ [3 ] .  

Equation (6) indicates the=, wi~h a boundary condition of the second kind (6 = 0) stip- 
ulated at the surface r = R, it has the root X = 0 (eigenvalue). Then series (5) becomes 

2 " , fo = ! ' f ( r )  r~ R2(v+, ) fo @ f" Jv v()~R) ii 

The operator H~ establishes a correspondence between problem (1)-(3) and :he problem 
of integrating the ordinary differential equation 

1 dT~ + ~ T ~  = f,~ (t) + R2~+~7~,~ ()~,~R) ga (t) 
a dt 

Letting 

dT,~ I 
T,dt=o = gl,~, 

dt I*=o= g2,. 

T~ (t) = A~ d) + g,,~ + t&~, 

we obtain for the new sought function An(t ) The problem 

dZA,~ 47 c$ d A .  
dt 2 a dt 

A .  (0) = O, 
dA,~ (0) 

dt 
- -  --=0, 

with the functions 

g, ,  (t) = A ( 0  + ~ 2 ~ + , 4 , ,  ( x , R )  g~ (t) - -  - -  

Since the Cauchy function in problem (9)-(10) is [4] 

(8) 

(9) 

<I0) 
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( t - - x )  when6 = 0 ,  I ( t - - x )  exp --2x---~ ' 

exp sh (t - -  x) , when 6 ~ =/= 0, i 2~, , / U ~  (n)  

~^2  2 - - 2  6n= 1--4~ 2 a % = l - ~ a c  o , 

hence the solution to problem (9)-(i0) will be the function 

! t - - ~  ( t - - x )  a t - - e x p  when 6 n 
b 2~r 2 ~  g~ ('~) dT -- 0, 

A~ (t), = (12) 
2a "r exp - -  sh ]f~-~ (t - -  r) g,~ (T) dx when 6,~ =/= 0. 

By virtue of gq. (9), moreover, we have the identity 

+ T d--f K ~ ( t ) - ~ - - c ~ g ~ ( t ) ,  (13)  

and by virtue of the properties of function Jv,v the identities 

B,,[J**(~,r)]~ ( a z  2v-F 1 0 ) 
' l Or 2 q -  J , ,  (r)~) - ~  - -  ~ u j , ,  ( X r ) ,  

�9 r O r  ' ' 

H,v[B,,(f(r))l_.____)2[~ + R 2v+' (0f 0Jv.v(~nr ) ) 
, E J''" ( ;%0 - -  f (r) Or ,=R" 

Application of operator H~. v to expression (8) according to rule (5) yields the solution to 
the original problem, which can be put in the form 

T (r, t ) :  ~h (r, t) -[- Ro (r, t) --]- R h (r, t) -~- Rmo (r, t), 

where 

for all n for which 6 n 
6no = 0, and 

Rph(r, t) = 

> 0, and Ro(r, 

n : 0  n=0  

t) = Ano(t)Xno(r) when there exists an no such that 

R h (r, t) : ~'%~ An (t) X~ (r) + tg~. (r) X. (r) 
n = n o + l  n=O 

for all n~mo for which ~n < 0 (Rph, Ro, and Rh, denotlng,respectlvely, the parabolic-- 
hyperbolic part, the transitional part, and the hyperbolic part of the solution to problem 
(1)-(3)), and 

Rmo(r, t) = 2 '  A. (t) X.  (r) 
n=rno+l  

is the remainder of the series with number mo defined by the condition 

~, IA.(OX~(r)l < ~o 
n----,-no@ 1 

for all t 6 [0, ~), and with r denoting an arbitrarily small positive number so that 

X.(r) J~,~ (~r) 

We will use function (ii) as the basis of the validity criterion for describing the thermal 
state of symmetric continuous bodies with a radius R by the hyperbolic heat-conductlon equa- 
tion. 
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For boundary-value problems I and II, the transcendental Besse! equation (6) becomes, 
respectively, 

Jv, vGR)  : 0, 

The roots of these equations are [5] 

R ' 

where 

xjG(~R) = o. 

~ # _  b~(n) 

R 
(~4) 

m - -  I 4 (m - -  3) (7m - -  3) 32 (m - -  I) (83m2--982m -- 3779) 

8fP 3 (8~') 8 15 (81B~) 5 

64 ( m - -  1) (6949m a -  153855m 2 -  1 5 8 5 7 4 3 m - -  6277237) _ ] . 

' * "  J J. o5 (8~) , 

. rn+3 4 (7m 2 - -  82m - -  9) 32(83m 2 - -  2075m ~ 3039m + 3537) 
b ~ ( n ) = [ ? - -  8? 

3 (8v) ~ 15 (8?) ~ 
1 i 

~i____r~(2v+4n_l); ? . . . .  ~ ( 2 v + 4 n + l ) ;  
4 4 

1 1 
m - - 4 v  2 when - - - - -  ~ v ~ - -  ; 

2 2 

bt(n) = l l~ 4 v 2 - -  1 (4v z -  1) (28v2 - -  31) - - . . .  ," 

8r~& 384 (a&) a 

1 [ v2--2v (4vz--Sv)(28'A--56v--30) ] 
bo (n) = T &~ - - " "  

2& 384 (M.z) 3 ' 

1 1 1 3 1 
l i = n @ -  v---- ; L , = n @  --v---- when v ~ - -  

2 4 2 4 2 

Let ~n > 0 for all n. Then 

- - . . . ]  ; 

c2 > 4 ~ a  2 ( i 5 )  q 

for all n = i, 2, 3, ... and, inasmuch as X n =(X~, X~ I) * ~whenn § ~, obviouslyinequality 
(15) holds true when Cq = ~. Accordingly, condition (15) is satisfied within the scope of 
the phenomenological heat-conduction theory. Here R h = Rmo = O. 

Let 6n > 0 for all n~mo. Then 

c~ > 4~?~o~" (16) 

When heat propagates through a body a t  a velocity which satisfies inequality (16), then, 
allowing an error so for all t 6 [0, =), one can describe the process by the classical heat- 
conduction equation. 

Estimate (16) indicates also that, at any arbitrarily high but finite velocity of heat 
propagation through a body, the solution to problem (1)-(3) will always contain a hyperbolic 
part. 

Let 6 n < 0 for all n. Then, taking into account the properties of the roots of Bessel 
'(x) (with ~ > --i), we can write functions Jr(x) and J~ 

Cq ~ 4~1a . (17) 

When heat propagates through a body at a velocity which satisfies inequality (17), then the 
hyperbolic equation must be used for calculating the temperature field in the body and, more- 
over, Ro E 0. Estimate (17), with roots (14) for all n, yields the estimate for the geo- 
metrical dimension of the region 

0 < m a x  Rv ~ < 2bl(n) a and 0 < m a x  R ~ <  2b~(n) �9 " - - a  

Cq Cq 
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where the thermal process corresponding to, respectively, boundary-value problems I and II 
is describable by the hyperbolic equation. For bodies with axial symmetry, where bl (I) = 
2.4048856 and be(1) = 3.8317060 [6], the size of this dimension is, respectively, 

O~<minR~<c. lO-~m; O-<minR~1<q. lO -6 m. 
The values of constants c and cI depend on the material. For aluminum, copper, steel, iron, 
gold, and cork they are 0.14576 and 0.23225, 0.1622 and 0.2584, 0.05185 and 0.08253, 0.06713 
and 0.10695, 0.1746 and 0.2782, 0.43026 and 0.68553, respectively. Quite evidently,Lthe 
region within which the thermodynamic equilibrium stabilizes is wider under the conditions 
of boundary-value problem II than under the conditions of boundary-value problem I. 

v 

For bodies with central symmetry, where 8 + ~, Eq. (6) with the Bessel function J~ (x) 
expressed through algebraic and trigonometric functions of x [3] can be written as 

] / / /~ - s in~ 'R l /2  --0. 

I I 
Then X n = n~IR~l a and condition (17) yields the estimate 

rain R~I2< ~ 2~, 
Oq 

indicating that in this case the width of the region where the hyperbolic equation (i) for 
I = /2 describes the thermal process is equal to the width of the region [7] where the 

equation 
1 OaT 1 OT OZT 

c2 - -  ~ = f(t, r) 
q at z a Ot Or z 

with initial conditions (2) and boundary conditions of the first or the second kind describes 
the temperature distribution. 

II 
When ~ = 0, then the eigenvalues % n are determined from the transcendental equation 

/ - ~ - ( 1 ) 2 ( s i n ~ I I ~ n ~  ) 
17 "~n'\l/2 COS '~ I I p I I  ~-  O, 

~1[/2II ,~ I I /pII  " n  " ' I / 2  
"~n * '1 /2  "~n *"1/2 

and at < Xa < ka < ... < k n < .... The estimate for the geometrical dimension is then 

max R'I) 2 < 2~'lia 
Cq 

Using X II = 1.16238 [i], we have calculatedo " min RIga for aluminum, copper, steel, and iron, 
for which it does not exceed 0.07045 i0- , 0.0783.10- 'I Q'02503"10-I ' and 0.03244 i0- m, 

An analysis of the values obtained for R:/a and Rl/a [7] reveals that the respectively. 
region within which the thermodynamic equilibrium stabilizes is now narrower under the condi- 
tions of boundary-value problem II than under the condition of boundary-value problem I. 

Relation (15) indicate~ that in the case of a thermal process describable by the para- 
bolic heat-conduction equation (Cq = ~) the region is as wide as the ~ entire body. From con- 
dition (16) follows 

R~ > 2bi (mo)a __. R~; R~ ~ > 2b2 (mo)__._ a _ R=, 
Cq Cq 

i.e., the classical equation of heat conduction applies, within an accuracy down to co, to 
bodies with geometrical dimensions no smaller than Rx and Re. When R I < R: or R II < Ra in 
boundary'value problems I and II, respectively, then thermal processes in symmetric continu- 
ous bodies must be described by the hyperbolic equation. 

The transitional part of problem (1)-(3) appears when number no is such that Cq = 2Xnoa, 
i.e., Cq satisfies the equation 

2a " \ 2a / + fj ' l~'v\ 2a J = 0 .  

According to estimates (15)-(17), in establishing the validity of either the classical or the 
hyperbolic heat-conduction equation for symmetric continuous bodies, one must take into ac- 
count not only the velocity of heat propagation but also the mode of interaction between the 
body and the ambient medium. 
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NOTATION 

Cq = /a/Tr, velocity of heat propagation; =, thermal diffusivity; %, thermal conduc- 
tivity; ~r, thermal flux relaxation time; Tc(t), ambient temperature at the surface r = R; 
qr(t), thermal flux in the radial direction at the surface; ~, coupling coefficient char- 
acterizing the boundary conditions of the first or the second kind (8 = 0 in the second kind, 

§ ~ in the first kind); and 2v + i~ 0: with v = 0 we have axial (cylindrical) symmetry and 
with ~ = :/~ we have central (spherical) symmetry. 
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